Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data

نویسندگان

  • Karl H. Szekielda
  • Jeffrey H. Bowles
  • David B. Gillis
  • W. David Miller
چکیده

It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results

Three southern USA forestry species, loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana), and shortleaf pine (Pinus echinata), were previously shown to be spectrally separable (83% accuracy) using data from a full-range spectroradiometer (400–2500 nm) acquired above tree canopies. This study focused on whether these same species are also separable using hyperspectral data acquired usi...

متن کامل

Daytime Fire Detection Using Airborne Hyperspectral Data

The shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to 2500 nm, can include significant emitted radiance from fire. There have been relatively few evaluations of the utility of shortwave infrared remote sensing data, and in particular hyperspectral remote sensing data, for fire detection. We used an Airborne Visible InfraRed Imaging Spectrometer (AVIRIS...

متن کامل

Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery

Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensi...

متن کامل

Characterization of Gaseous Effluents from Modeling of LWIR Hyperspectral Measurements

Longwave Infrared (LWIR) radiation comprising atmospheric and surface emissions provides information for a number of applications including atmospheric profiling, surface temperature and emissivity estimation, and cloud depiction and characterization. The LWIR spectrum also contains absorption lines for numerous molecular species which can be utilized in quantifying species amounts. Modeling th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009